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Free energy of a long, flexible, self-avoiding polymer chain in a tube
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The confinement free energy of a long, flexible, self-avoiding polymer chain, fluctuatoshgpatial dimen-
sions in an infinitely long cylindrical tube with diameteris given byAFw—AkBTL‘lR” for R>L. HereR
is the length of tube occupied by the chain, @nid a universal amplitude. We show how to determife and
R, from the correlation lengtig, (t) of the n-vector model of magnetism in the limit—0, defined on the
cylindrical volume, near the critical temperaturg€l) where &, diverges. Using this correspondence, we
estimateA in two dimensions from transfer-matrix data for self-avoiding walks on strips of widklith free,
critically absorbing, and periodic boundaries. Our results for the universal amplituded B~LR”*1(WZ>,
wherew is the winding number, are in excellent agreement with Monte Carlo simulations of Frauenkron,
Causo, and Grassberger for strips with periodic bounddi84063-651X99)12105-6

PACS numbe(s): 36.20.Ey, 05.50+q, 05.70.Jk

[. INTRODUCTION chains correspond to long correlation lengths in the magnetic
system, i.e., near-critical temperatures. In Sec. Il of this pa-

Squeezing a long, flexible polymer chain with excluded-per we show that the fundamental relatiéhi(2) for a poly-
volume interactions into a narrow tube with repulsive “hard mer in a tube also follow from the polymer-magnet corre-

yvalls (_jecre_ases the conformational entropy. Ex_ternal .Workspondence. We relaté and @ to the amplitudeA (L) and
is required, i.e., the free energy of confinemarm is posi-

tive. However, if the interaction between the monomers an&ritical temperaturé,(L) in a one-dimensional transition in
: ' - . : which the correlation lengtl§, (t) diverges as
the tube walls is sufficiently attractive, the energetic advan- gtE
tage of confinement outweighs the entropic disadvantage,
andAF is negative. ~ _ -1
An illuminating discussion of the free energy of confine- aO=ALI-LLI NG, @
ment with repulsive monomer-tube interactions in mind is
given in de Gennes’ booKl]. For a chain ofN monomers
fluctuating ind dimensions in an infinitely long cylindrical
volume with diameter or othe[2] characteristic size.,
simple scaling arguments imply

but there is no corresponding thermal singularity in the free
energy. In contrast, in thé-dimensional bulk

Eo()=Apud t—te(0) ], T\ te(), 4

i AF AkBT .
im-—~A——-m,
Noee R L @ , ,
and the free energy has a thermal singularity[t
N L\ g —t¢(*)]%". Equivalently, we related and « to the largest
lim R~z T (2 eigenvalue)\(Lo)(t) of the transfer matrix for self-avoiding
Nooo Y

walks with monomer fugacitg ' neart=t.(L), where the
eigenvalue equals 1. Using finite-size scaling theory for mag-
in the regimeL>a. HereR is the length of tube occupied netic systems, we also confirm in Sec. Il thats universal
by the chain,a is the mean distance between consecutiveand « is not.
monomers, and and « are dimensionless amplitudes. The  The results of Sec. Il provide a convenient starting point
quantity A is universal, i.e., the same for all flexible, self- for calculatingA with field theory or numerical finite-size
avoiding polymer chains, but does depend on the spatial discaling. In Sec. Il we estimatA in two dimensions from
mension and the universality class of the monomer-tube inaumerically exact transfer-matrix results for self-avoiding
teraction. The other amplitude is nonuniversal. de Gennes’ walks on infinitely long strips of square lattice withrows,
scaling picture does not predict the valuesiodnd . How  whereL=2,3,...,11. Three universality classes, correspond-
to calculate these amplitudes is the main topic of this papeiing to free, critically absorbing and periodic boundaries, are
The equivalence of polymers or self-avoiding walks andconsidered. In the case of periodic boundaries, Monte Carlo
the n-vector model of magnetism far— 0, first pointed out  simulations have been carried out by Frauenkron, Causo, and
by de Genne$3], is an extremely valuable theoretical tool, Grassbergel7]. Our results forA and another universal am-
that makes the powerful techniques of critical phenomenglitude B related to the winding number are in excellent
available for polymer problem$1,3—6. Long polymer agreement with their estimates.
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Il. STATISTICAL MECHANICS OF A POLYMER
IN A TUBE

The grand canonical partition function of a self-avoiding

walk or polymer between pointg andr, of ad-dimensional
lattice with lattice constan& and a cylindrical boundary of
diameterL is defined by

ZL(rl,rz,t):J:CdNeiNt./\/‘L(rl,rz,N). (5)

HereK =e™!is the fugacity per step, antl (r,,r,,N) is the
number of distinct walks withiN steps betweem,; andr,.
Anticipating the limitN—oc in Egs.(1) and(2), we integrate
rather than sum over integét in Eq. (5). As noted by de
Gennes[1,4-6, the partition functionZ (r,,r,,t) is for-
mally identical with the spin-spin correlation function of a

system ofn-component spins with ferromagnetic nearest-

neighbor couplinK =J/kgT=e"! on the lattice in the limit

n—0. This is the basis of the polymer-magnet correspon-

dence. The quantity increases monotonically witfhi and
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lated by a Legendre transformation. There is an obvious
similarity with the ordinary thermodynamics of fluids. The
end-to-end distance and the force KgT) 19 In N /dr ex-
erted by the ends of the polymer are analogous to the volume
and pressure, respectively, of the fluid.

It is useful to expand the grand canonical partition func-
tion of Eq. (5) in the form

Z(rlyrzat):Z C(Li)(ruerL))\(Li)lerZVa, (11

where theA(L')(t) are eigenvalues of the transfer matrix of a
slice of system perpendicular to the cylinder axis with thick-
nessa. Here we have introduced cylindrical coordinates
=(X;j,ri,). Forr=|r;—r,|>L the dominant term in the sum
overi comes from the largest eigenvalue, and

&)’

whereé, (t) is the correlation length of the magnetic system.

1|nZ(r t)=EIn AO(t)=— (12)
r o a Tt

plays the role of a temperature variable in the magnetic For finite L, A (9(t) is an analytic, monotonically decreas-

model.

ing function oft, as expected from Eq$5) and (12). From

The canonical partition function of a polymer or self- Eq. (12) we see that, (t) diverges with critical exponent 1,

avoiding walk with a fixed number of monomers and fixed

end points equals the quantityi (r,,r,,N) on the right side

of Eq. (5). It is related to the grand canonical partition func-

tion by the inverse Laplace transformation

Ct+iom

c—imw 2’7T|

NL(rlerIN): eNtZL(rlar21t)'

(6)

The free energy of confinementr introduced in Eq(1) is
defined by

_ NL(rliN)
AF——kBTh’]N—w(rl’N), (7)
where
NL(rlvN)zpf d¥ oV (r1,r2,N) (8)

is the total number of distinct walks & steps originating
from siter, in the cylindrical volume, ang is the density of
lattice sites.

For a polymer in a tube with=|r,;—r,|>L the integral

relationship(5),(6) between the canonical and grand canoni-
cal partition functions can be greatly simplified. de Gennes’

fundamental equationd) and(2) hold in the largeN limit
with r, InA_, and InZ_ proportional toN. In this limit the
asymptotic form of the integrals in Eq&) and (6) follows
from steepest-descent integration, which yields

INA (r,N)=InZ, (r,t)+Nt, (9)

(10

J J
t=&—NInN|_(r,N), N——EInZL(r,t).

Here we have introduced the simpler notatidn(r,,r,,t)
—Z (r,t), N (ry,ro,t)— N/ (r,t). The grand canonical and

as in Eq.(3), when\ (%) approaches 1, with

MO0 - 1y =1, (13)

1 _ d 1
A(L) a dt gL(t) t:tc(l_)

1d 0)
_537& (t)t:tC(L)- (14

Although the correlation length and susceptibility diverge in
this “transition,” there is no spontaneous symmetry break-
ing nor any anomaly in the spectrum of eigenvalues of the
transfer matrix. We refer to the transition as one-
dimensional, since it also exists on a one-dimensional lattice
[8].

From Egs.(9), (10), and(12) it is simple to show that

r d
- — _ (0)
N=—— i), (15)
i| N (r,N —3| 2Ot (16)
é'rn L(r, )_an L),
2 1 [(d/dt)InAO(1)]?
L (r )= - LIURALAOT

ar (d/dt)?naOt)

The most probable end-to-end distarRRgis the value ofr
that maximizes oV, (r,N) for fixed N. At extrema of
N (r,N) the derivative in Eq(16) vanishes, and(?=1.
Equations(5) and(12) imply negative and positive first and
second derivatives, respectively, ofNfP(t) with respect td.
From this and Eq(17) it follows that the single extremum at
)\(LO)=1 is an absolute maximum. As noted in E@.3),
)\(,_0)=1 att=t.(L), where the correlation of the magnetic
system diverges as in E(B).

Settingt=t,(L) and A\{?=1 in Egs.(9),(12),(15—(17)
and expanding Iwv, (r,N) in a Taylor series about=R

canonical free energies of a long polymer in a tube are reyields
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Rid Substituting Egs(27) and (28) into Egs.(23) and (24), we
N=——_ A% (18 obtain
t=ty(L)
Ao 1/ a \¥ 29
— 2 = _l a: -
(r=Rp Yo Yo\ Apuik

IN N (r,N)~Nt.(L)— ZaR
aR for the amplitudesA and a in Egs. (1) and (2). Since the

[(d/dt)In )\<L0>(t)]2 entire scaling functiorF(x) is universal x, andy, are also
X TN +.... (19 universal constants. However, the dimensionless amplitude
(d/d)~InA () |y, a~ 1A, of the correlation length, with ,, defined by Eq.

(4), is nonuniversal, depending, for example, on the type of
The second relation implies typical fluctuationsrin Ry of  lattice. Together with Ec(29) this establishes the universal-

order (an‘)l’2~Nl’2. ity of A and nonuniversality of.
To calculate the free energy of the confined polymer, we
substitute Eq(19) and the bulk resulfl] Ill. TRANSFER-MATRIX RESULTS FOR TWO
DIMENSIONS
INNV..(r1,N)=Nt.()+0O(InN) (20

Some of the most precise numerical estimates of the scal-
into Egs.(7) and(8). The dominant contribution to the inte- ing indices of self-avoiding walks in two dimensions have
gral overr, comes from the maximum at=R;. We also  been obtained with a transfer-matrix finite-size methbt—
rewrite d/dt)A(?t,(L)] in Eq.(18) in terms ofA(L) using  14] due to Derridd11]. The largest eigenvalue of an exact

Eq. (14). In this way we obtain transfer matrix for self-avoiding walks on strips of infinite
length and finite width_ is determined numerically. Then the
AF=KkgTN[tc()—tc(L)], (21)  sequence of numerically exact results for firlités extrapo-
lated toL =. Convergence accelerating algorithfd$,16|
R=A(L)N (220  have proved very useful in extrapolating the data. These al-

gorithms involve subtraction of numbers with small relative
to leading order for larg&l. Comparing these two equations differences and require data accurate to many significant fig-
with de Gennes’ fundamental relatiofly and(2) yields our  ures.
main results In this section self-avoiding walks on infinitely long two-
dimensional strips of square lattice with lattice constant

L L =1 and withL=2,3...,11rows are analyzed with the
A_LI[nWA(L)[tC(OO)_tC(L)]’ (23 transfer-matrix approach just described. We work in the
grand canonical ensemble and for free and critically-
L [a\ absor_b_ing boundaries introduce distinct surface and bulk
a_LlinwA(L) - (24)  fugacities

K=el, K=e! (30
for the amplitudesA and «, with A(L) given by Eq.(14). _
That the limits in Eqs(23) and(24) exist and are univer- 0r @ step along either edge and for all other steps, respec-
sal and nonuniversal, respectively, follows from the finite-tively. The transfer matrix is the same as in R¢fil, 14

size scaling fornj9,10]
L
bulk aries, the surface fugacit is an irrelevant variable. We
N , have obtained numerical results both for strips wWith=K
from critical phenomena, valid for large and smallt andK =K.~ 0.2675, where we estimafe4] that the lead-
— te(0). _Thbe hfun_ctlon F(x) is universal and has the o jrelevant surface variable, which has scaling inglex
asymptotic behavior —1, vanishes. In the latter case one expéatsl findg faster
1 convergence of the finite-size estimates as the system size
Yo(XFX0) 7 X=X increases
FX)~{ (26) ' : . .
X7, X— 2, For both these choices fd¢ the critical fugacityK (L)

. ] =exd —t(L)] at which¢, diverges was determined from the
which reproduces the divergent behavi@y and (4) of the  congition(13) that the largest eigenvalue of the transfer ma-
correlation length for finite and infinite, respectively, with i equal 1. Our results foK (L) with L=2,3,...,11 are
A Uy listed in Table | and shown by full and empty circles in Fig.

bulk)

A(L):yOL( (277 1. The data seem compatible with the V”=L~*? depen-

L dence implied by Eq(28) for largeL. Extrapolating the two
" sequences th =« with the van den Broek—Schwartz algo-
t(L)=t.(o0)—X (Abulk) 28) rithm [15,16], we obtainK.(«)=0.380+0.001, consistent

c c oL ' with the best estimate

A. Free boundaries
1lv

(25) In the semi-infinite geometry with fre@ard-wal) bound-

[t—tc(oo)]
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TABLE I. Transfer-matrix results for free boundary conditions.
The entry forK (=) is the value in Eq(31). The entries forA()
were obtained with the van den Broek—Schwartz extrapolation al-

A(L)

23

PRE 59

22
21 -
20 I
1.9 I
1.8 -
1.7 -

1.6

) B
0.00 0.10 0.20

0.30

gorithm.

Ks=K Ks=0.2675
L Ke(L) A(L) Ke(L) A(L)
2 0.6180 3399 1.351 2016  2.7383 178  2.896 9275
3 0.5222 9500 1.540 2518 0.6965 6501 2.111 1681
4 0.4790 9131 1.654 9658 0.5433 0133 2.078 3113
5 0.4547 5926  1.732 2575 0.4876 3388  2.080 1182
6 0.4392 9415 1.787 8753  0.4590 4147 2.085 6608
7 0.4286 7323 1.829 8051 0.4417 3491 2.091 0148
8 0.4209 7265 1.862 5388 0.4301 9228 2.095 5531
9 0.4151 6014 1.888 7978  0.4219 8094  2.099 2892
10 0.4106 3411 1.910 3269 0.4158 6327 2.102 3569
11 0.4070 2125 1.928 2964 0.4111 4399 2.104 8913
% 0.3790 5228 2.120.01 0.3790 5228 2.120.01

K¢(0)=0.379 052 28 (31
of Guttmann and co-workefd.7,18.
The transfer-matrix data for the quantity
A(L)=LA(L) " [te() —te(L)]
=LK\ O(K,,K)In (32

K |

on the right side of Eq(23) are also listed in Table I. Here
we have expressed (L) in terms of the largest eigenvalue
of the transfer matrix}\(,_o) using Egs.(14) and (30). In the
casesK =K andK =K., A\{(9(Ks,K) denotes the ordi-
nary and partial derivative, respectively,)oﬁo) with respect
to K. According to Eq(23) the A(L) approach the universal

0.50
o
[ ]
B (=]
045 ¢
° [ ]
3 ..
Y °e
Oe A
L 20
0.40 |- .
aast *
r LT .
u [ ]
| n
0.35 — v
000 005 010 015 020
L-4/3

FIG. 1. Critical monomer fugacitiK.(L) =exd —t.(L)] for free
boundaries wittK ;=K (full circles) andK =K} ..=0.2675(empty
circles, critically absorbing boundarie¢squares and periodic
boundariegtriangles. The point on the vertical axis is the estimate
(31) of K,(°) obtained in Refs[17,18].

-1

FIG. 2. The quantityA(L) defined in Eq.(32) for free bound-
aries with K;=K (full circles) and K =Kf..=0.2675 (empty
circles. The square point with error bars on the vertical axis is our
van den Broek—Schwartz estimaig..=2.12+0.01.

amplitudeA in Eqg. (1) in the limit L—oco. Extrapolating the
two sequences di(L) in Table | toL =« with the van den
Broek—Schwartz algorithm, we estimafg.=2.12+0.01.
The two sequences & (L) and our prediction for the lim-
iting value are shown in Fig. 2. The sequence Wi+K is
compatible with the expectdd 9] form A(L)—A(e)~L*

for largelL.

B. Critically absorbing boundaries

Here we follow the same procedure as for free bound-
aries, except thaky is replaced by the estimats’; ,4s
=0.7736 of the critical edge fugacity for adsorption of a
self-avoiding walk[14]. The corresponding transfer-matrix
data forK (L) andA(L) are listed in Table Il. Thé& depen-
dence of th&K (L), shown by square points in Fig. 1, seems
compatible with the asymptotic behavi®8), and our van

TABLE II. Transfer-matrix results for critically adsorbing
boundary conditions. The entry fét.(«) is the value in Eq(31).
The entry forA(«) was obtained with the van den Broek—Schwartz
extrapolation algorithm.

L K¢(L) A(L)

2 0.2926 5770 —0.1171 2598
3 0.3524 5370 —0.1182 4475
4 0.3647 7772 —0.1195 3242
5 0.3697 1263 —0.1206 9628
6 0.3722 8653 —0.1217 2166
7 0.3738 3657 —0.1226 1591
8 0.3748 5892 —0.1233 9830
9 0.3755 7708 —0.1240 8819
10 0.3761 0545 —0.1247 0203
11 0.3765 0822 —0.1252 5310
0 0.3790 5228 —0.129+0.001
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TABLE lIl. Transfer-matrix results for periodigcylindrical) 0.73

boundary conditions. The entry fét () is the value in Eq(31). L

The entries forA(«) and B(L) were obtained with the van den 072 L

Broek—Schwartz extrapolation algorithm. | .

L Kc(L) A(L) B(L) o 071

2 0.5000 0000 0.8308 0188 0.2500 0000 < 0.70 |-

3 0.4367 4647 0.7503 6112 0.3635 0534 L *

4 0.4151 1681 0.7142 1136 0.4137 4660 0.69 | .

5 0.4047 4907 0.6976 9258 0.4372 7019 L o

6 0.3987 6231 0.6895 1490 0.4494 5193 068} *

7 0.3948 9044 0.6850 3908 0.4564 6874 L

8 0.3921 9437 0.6823 5214 0.4609 0605 0.67 -

9 0.3902 1775 0.6806 1558 0.4638 9589 L

10 0.3887 1234 0.6794 2868 0.4660 3173 0.66 R T T TR

11 0.3875 3155 0.6785 8229 0.4676 4803 0.00 0.02 0.04 0.06 0.08

o 0.3790 5228 0.6760.001 0.4740.001

L2

) . FIG. 3. The quantityA(L) defined in Eq(32) for periodic(cy-
den Broek—Schwartz estimake,(-) =0.379+0.001 is con- lindrical) boundary conditions. The square point with error bars on

sistent with Eq(31). Extrapolating the sequence AfL) i the vertical axis is the Monte Carlo estimagy o= 0.675+0.002
Table | toL=c with the van den Broek—Schwartz algo- of Ref.[7].

rithm, we obtainA i ,g= —0.129+-0.001. Note tha® i ads

is negative. The narrower the strip, the lower the free energylete clockwise rotation has weight”. In the largeN limit
of confinement, due to the greater fraction of the monomerghe free energies in the two ensembles are again related by a
on energetically favored boundary sites. Legendre transformation similar t8), (10), and(w?) satis-
fies
C. Periodic boundary conditions

2
The case of periodic boundaries corresponds to a square L2<w2): J In N, (r,N,7)
Py Y

lattice ofL rows on the surface of an infinitely long cylinder.

r:RH, 7=0
The A(L) are given by Eq(32), with | (P(K,,K) replaced ,
by d)\(LO)(K)/dK_ The transfer-matrix data foK(L) and :R”iz InAOt, ) (34)
A(L) are listed in Table Ill. Once again tthedependence of aT t=ty(L), 7=0

theK.(L), shown by triangular points in Fig. 1 is compatible
with the asymptotic behavid8), and our van den Broek— compining Egs. (13), (33, and (34), we obtain B
Schwartz estimatd () =0.380+0.001 is consistent with =lim,_... B(L), where
(31). The A(L), shown in Fig. 3, are compatible with the
expected 19] form A(L) — A(e)~L 2 for largeL. Our van
den Broek—Schwartz estima#geiqqic=0.676+0.001 of the
limiting value is in excellent agreement with the Monte
Carlo result Apeio=0.675£0.002 of Frauenkron, Causo, ) ) )
and Grassberggf], indicated by the square point with error ~ The transfer-matrix data fdB(L) are listed in Table Il
bars on the vertical axis. and shown in Fig. 4. Th&(L) are compatible with the ex-
Frauenkronet al. also report a Monte Carlo estimate of Pected[19] form B(L)—B(e)~L"? for large L. Our van
the universal amplitud® in the scaling prediction den Broek—Schwartz estimaBe=0.474+0.001 of the limit-
ing value is in excellent agreement with the Monte Carlo
resultB=0.475+0.004 of Frauenkroet al

(39

|3L—1 i 2Ot
( )_Eﬁ_fz - ( 'T) t=t. (L), 7=0
W(L),

2
W) B .4 (33

IV. CONCLUSIONS

for the second moment of the winding numberof self- Simple scaling arguments given in de Gennes’ book de-
avoiding walks on the surface of a cylinder. Heves de-  termine the the free energy of a long flexible polymer in a
fined as the number of times a walk winds around the cylintube apart from a dimensionless universal consfarince
der, with positive and negatiwe corresponding to clockwise the early 1970's one has known that long polymer chains are
and counterclockwise directions. related to the magnetin-vector model near criticality. We
To calculate(w?), we include fugacitie®” ande™ " for  were interested in learning whethércan be expressed in
each clockwise and counterclockwise step, respectively, aierms of well-known universal exponents and amplitudes in
the walk perpendicular to the cylinder axis in both the ca-critical phenomena. Our main results, given in @, (14),
nonical and grand-canonical ensembles. Since thereare and (23), relate A to the correlation length of the magnetic
rows parallel to the symmetry axis of the cylinder, a com-model and to the largest eigenvalue of the polymer transfer
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0.50 calculating A with transfer-matrix finite-size scaling. For

[ self-avoiding walks on the surface of a cylinder we obtain
. Aperiog=0.676+0.001 andB=0.474+ 0.001 for the universal

0.48 + constants defined in Eggl) and(33), in excellent agreement

with Monte Carlo result$7]. For free(hard-wal) and criti-

L %, cally absorbing boundaries we predigt..=2.12+0.01 and

0.46 - * Acritadgs= —0.12950.001. That Aqee™>Aperiod 1S Physically

I reasonable, since hard walls confine the polymer more

tightly confined than periodic boundaries, resulting in a

. lower conformational entropy. For critically absorbing

boundariesAi; 24< 0, i.e., the energetic advantage of con-

- finement outweighs the entropic disadvantage.

0.42 - We are unaware of any estimates of the universal ampli-

[ tudeA in three dimensions. Milchegt al. [20] have carried

out Monte Carlo simulations of a polymer chain in a three-

B(L)

0.44

0.40 00‘ : '0 62' : ‘0'04‘ : ‘0 '06‘ ' '0 08 dimensional tube with a square cross section. They show
0. : ‘ ' : how an attractive short-range interaction between the mono-
L2 mers and tube walls affects the longitudinal and transverse

. S o dimensions of the polymer and the monomer density profile.
FIG. 4. The quantityB(L) defined in Eq(35) for periodic(cy-  stjlck [21] has recently analyzed the density profile of two-

lindrical) boundary conditions. The square point with error bars ongimensional polymers on strips with a numerical transfer-
the vertical axis is the Monte Carlo estimde=0.475-0.004 of matrix approach similar to our own.

Ref. [7].
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