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Free energy of a long, flexible, self-avoiding polymer chain in a tube
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The confinement free energy of a long, flexible, self-avoiding polymer chain, fluctuating ind spatial dimen-
sions in an infinitely long cylindrical tube with diameterL, is given byDF'AkBTL21Ri for Ri@L. HereRi
is the length of tube occupied by the chain, andA is a universal amplitude. We show how to determineDF and
Ri from the correlation lengthjL(t) of the n-vector model of magnetism in the limitn→0, defined on the
cylindrical volume, near the critical temperaturetc(L) where jL diverges. Using this correspondence, we
estimateA in two dimensions from transfer-matrix data for self-avoiding walks on strips of widthL with free,
critically absorbing, and periodic boundaries. Our results for the universal amplitudesA andB'LRi

21^w2&,
where w is the winding number, are in excellent agreement with Monte Carlo simulations of Frauenkron,
Causo, and Grassberger for strips with periodic boundaries.@S1063-651X~99!12105-6#

PACS number~s!: 36.20.Ey, 05.50.1q, 05.70.Jk
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I. INTRODUCTION

Squeezing a long, flexible polymer chain with exclude
volume interactions into a narrow tube with repulsive ‘‘ha
walls’’ decreases the conformational entropy. External w
is required, i.e., the free energy of confinementDF is posi-
tive. However, if the interaction between the monomers a
the tube walls is sufficiently attractive, the energetic adv
tage of confinement outweighs the entropic disadvanta
andDF is negative.

An illuminating discussion of the free energy of confin
ment with repulsive monomer-tube interactions in mind
given in de Gennes’ book@1#. For a chain ofN monomers
fluctuating ind dimensions in an infinitely long cylindrica
volume with diameter or other@2# characteristic sizeL,
simple scaling arguments imply

lim
N→`

DF

Ri
'A

kBT

L
, ~1!

lim
N→`

N

Ri
'aS L

aD 1/n 1

L
~2!

in the regimeL@a. HereRi is the length of tube occupie
by the chain,a is the mean distance between consecut
monomers, andA anda are dimensionless amplitudes. Th
quantity A is universal, i.e., the same for all flexible, se
avoiding polymer chains, but does depend on the spatia
mension and the universality class of the monomer-tube
teraction. The other amplitudea is nonuniversal. de Gennes
scaling picture does not predict the values ofA anda. How
to calculate these amplitudes is the main topic of this pa

The equivalence of polymers or self-avoiding walks a
the n-vector model of magnetism forn→0, first pointed out
by de Gennes@3#, is an extremely valuable theoretical too
that makes the powerful techniques of critical phenom
available for polymer problems@1,3–6#. Long polymer
PRE 591063-651X/99/59~5!/5833~6!/$15.00
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chains correspond to long correlation lengths in the magn
system, i.e., near-critical temperatures. In Sec. II of this
per we show that the fundamental relations~1!,~2! for a poly-
mer in a tube also follow from the polymer-magnet corr
spondence. We relateA and a to the amplitudeL(L) and
critical temperaturetc(L) in a one-dimensional transition in
which the correlation lengthjL(t) diverges as

jL~ t !'L~L !@ t2tc~L !#21, t↘tc~L !, ~3!

but there is no corresponding thermal singularity in the f
energy. In contrast, in thed-dimensional bulk

j`~ t !'Lbulk@ t2tc~`!#2n, t↘tc~`!, ~4!

and the free energy has a thermal singularity;@ t
2tc(`)#dn. Equivalently, we relateA and a to the largest

eigenvaluelL
(0)(t) of the transfer matrix for self-avoiding

walks with monomer fugacitye2t neart5tc(L), where the
eigenvalue equals 1. Using finite-size scaling theory for m
netic systems, we also confirm in Sec. II thatA is universal
anda is not.

The results of Sec. II provide a convenient starting po
for calculatingA with field theory or numerical finite-size
scaling. In Sec. III we estimateA in two dimensions from
numerically exact transfer-matrix results for self-avoidi
walks on infinitely long strips of square lattice withL rows,
whereL52,3, . . .,11. Three universality classes, correspon
ing to free, critically absorbing and periodic boundaries,
considered. In the case of periodic boundaries, Monte C
simulations have been carried out by Frauenkron, Causo,
Grassberger@7#. Our results forA and another universal am
plitude B related to the winding number are in excelle
agreement with their estimates.
5833 ©1999 The American Physical Society



ng

f

a
st

on

et

lf-
ed

c-

ni
es

d
r

us
e

me

c-

a
k-

m.
-

,

in
k-

the
e-
tice

d

t

ic

5834 PRE 59THEODORE W. BURKHARDT AND IHNSOUK GUIM
II. STATISTICAL MECHANICS OF A POLYMER
IN A TUBE

The grand canonical partition function of a self-avoidi
walk or polymer between pointsr1 andr2 of a d-dimensional
lattice with lattice constanta and a cylindrical boundary o
diameterL is defined by

ZL~r1 ,r2 ,t !5E
0

`

dNe2NtNL~r1 ,r2 ,N!. ~5!

HereK5e2t is the fugacity per step, andNL(r1 ,r2 ,N) is the
number of distinct walks withN steps betweenr 1 and r 2.
Anticipating the limitN→` in Eqs.~1! and~2!, we integrate
rather than sum over integerN in Eq. ~5!. As noted by de
Gennes@1,4–6#, the partition functionZL(r1 ,r2 ,t) is for-
mally identical with the spin-spin correlation function of
system ofn-component spins with ferromagnetic neare
neighbor couplingK5J/kBT5e2t on the lattice in the limit
n→0. This is the basis of the polymer-magnet corresp
dence. The quantityt increases monotonically withT and
plays the role of a temperature variable in the magn
model.

The canonical partition function of a polymer or se
avoiding walk with a fixed number of monomers and fix
end points equals the quantityNL(r1 ,r2 ,N) on the right side
of Eq. ~5!. It is related to the grand canonical partition fun
tion by the inverse Laplace transformation

NL~r1 ,r2 ,N!5E
c2 i`

c1 i` dt

2p i
eNtZL~r1 ,r2 ,t !. ~6!

The free energy of confinementDF introduced in Eq.~1! is
defined by

DF52kBT ln
NL~r1 ,N!

N`~r1 ,N!
, ~7!

where

NL~r1 ,N!5rE ddr 2NL~r1 ,r2 ,N! ~8!

is the total number of distinct walks ofN steps originating
from siter1 in the cylindrical volume, andr is the density of
lattice sites.

For a polymer in a tube withr 5ur12r2u@L the integral
relationship~5!,~6! between the canonical and grand cano
cal partition functions can be greatly simplified. de Genn
fundamental equations~1! and ~2! hold in the large-N limit
with r, lnNL , and lnZL proportional toN. In this limit the
asymptotic form of the integrals in Eqs.~5! and ~6! follows
from steepest-descent integration, which yields

lnNL~r ,N!5 ln ZL~r ,t !1Nt, ~9!

t5
]

]N
lnNL~r ,N!, N52

]

]t
ln ZL~r ,t !. ~10!

Here we have introduced the simpler notationZL(r1 ,r2 ,t)
→ZL(r ,t), NL(r1 ,r2 ,t)→NL(r ,t). The grand canonical an
canonical free energies of a long polymer in a tube are
-

-

ic

-
’

e-

lated by a Legendre transformation. There is an obvio
similarity with the ordinary thermodynamics of fluids. Th
end-to-end distancer and the force (kBT)21] lnNL /]r ex-
erted by the ends of the polymer are analogous to the volu
and pressure, respectively, of the fluid.

It is useful to expand the grand canonical partition fun
tion of Eq. ~5! in the form

Z~r1 ,r2 ,t !5(
i

cL
( i )~r1' ,r2'!lL

( i )ux12x2u/a , ~11!

where thelL
( i )(t) are eigenvalues of the transfer matrix of

slice of system perpendicular to the cylinder axis with thic
nessa. Here we have introduced cylindrical coordinatesr i
5(xi ,r i'). For r 5ur12r2u@L the dominant term in the sum
over i comes from the largest eigenvalue, and

1

r
ln Z~r ,t !5

1

a
ln lL

(0)~ t !52
1

jL~ t !
, ~12!

wherejL(t) is the correlation length of the magnetic syste
For finiteL, lL

(0)(t) is an analytic, monotonically decreas
ing function of t, as expected from Eqs.~5! and ~12!. From
Eq. ~12! we see thatjL(t) diverges with critical exponent 1
as in Eq.~3!, whenlL

(0) approaches 1, with

lL
(0)~ t !u t5tc(L)51, ~13!

1

L~L !
5

d

dt

1

jL~ t !U
t5tc(L)

52
1

a

d

dt
lL

(0)~ t ! t5tc(L) . ~14!

Although the correlation length and susceptibility diverge
this ‘‘transition,’’ there is no spontaneous symmetry brea
ing nor any anomaly in the spectrum of eigenvalues of
transfer matrix. We refer to the transition as on
dimensional, since it also exists on a one-dimensional lat
@8#.

From Eqs.~9!, ~10!, and~12! it is simple to show that

N52
r

a

d

dt
ln lL

(0)~ t !, ~15!

]

]r
lnNL~r ,N!5

1

a
ln lL

(0)~ t !, ~16!

]2

]r 2 lnNL~r ,N!52
1

ar

@~d/dt!ln lL
(0)~ t !#2

~d/dt!2ln lL
(0)~ t !

. ~17!

The most probable end-to-end distanceRi is the value ofr
that maximizes lnNL(r ,N) for fixed N. At extrema of
NL(r ,N) the derivative in Eq.~16! vanishes, andlL

(0)51.
Equations~5! and ~12! imply negative and positive first an
second derivatives, respectively, of lnlL

(0)(t) with respect tot.
From this and Eq.~17! it follows that the single extremum a
lL

(0)51 is an absolute maximum. As noted in Eq.~13!,
lL

(0)51 at t5tc(L), where the correlation of the magnet
system diverges as in Eq.~3!.

Setting t5tc(L) and lL
(0)51 in Eqs. ~9!,~12!,~15!–~17!

and expanding lnNL(r ,N) in a Taylor series aboutr 5Ri
yields
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N52
Ri

a

d

dt
lL

(0)~ t !U
t5tc(L)

, ~18!

lnNL~r ,N!'Ntc~L !2
~r 2Ri!

2

2aRi

3
@~d/dt!ln lL

~0!~ t !#2

~d/dt!2 ln lL
~0!~ t !

U
t5tc(L)

1••• . ~19!

The second relation implies typical fluctuations inr 2Ri of
order (aRi)

1/2;N1/2.
To calculate the free energy of the confined polymer,

substitute Eq.~19! and the bulk result@1#

lnN`~r1 ,N!5Ntc~`!1O~ ln N! ~20!

into Eqs.~7! and~8!. The dominant contribution to the inte
gral over r2 comes from the maximum atr 5Ri . We also
rewrite (d/dt)lL

(0)@ tc(L)# in Eq. ~18! in terms ofL(L) using
Eq. ~14!. In this way we obtain

DF5kBTN@ tc~`!2tc~L !#, ~21!

Ri5L~L !N ~22!

to leading order for largeN. Comparing these two equation
with de Gennes’ fundamental relations~1! and~2! yields our
main results

A5 lim
L→`

L

L~L !
@ tc~`!2tc~L !#, ~23!

a5 lim
L→`

L

L~L !S a

L D 1/n

, ~24!

for the amplitudesA anda, with L(L) given by Eq.~14!.
That the limits in Eqs.~23! and~24! exist and are univer-

sal and nonuniversal, respectively, follows from the fini
size scaling form@9,10#

jL~ t !5LFF S L

Lbulk
D 1/n

@ t2tc~`!#G ~25!

from critical phenomena, valid for largeL and small t
2tc(`). The function F(x) is universal and has th
asymptotic behavior

F~x!'H y0~x1x0!21, x→2x0

x2n, x→`,
~26!

which reproduces the divergent behavior~3! and ~4! of the
correlation length for finite and infiniteL, respectively, with

L~L !5y0LS Lbulk

L D 1/n

, ~27!

tc~L !5tc~`!2x0S Lbulk

L D 1/n

. ~28!
e

-

Substituting Eqs.~27! and ~28! into Eqs.~23! and ~24!, we
obtain

A5
x0

y0
, a5

1

y0
S a

Lbulk
D 1/n

~29!

for the amplitudesA and a in Eqs. ~1! and ~2!. Since the
entire scaling functionF(x) is universal,x0 andy0 are also
universal constants. However, the dimensionless amplit
a21Lbulk of the correlation length, withLbulk defined by Eq.
~4!, is nonuniversal, depending, for example, on the type
lattice. Together with Eq.~29! this establishes the universa
ity of A and nonuniversality ofa.

III. TRANSFER-MATRIX RESULTS FOR TWO
DIMENSIONS

Some of the most precise numerical estimates of the s
ing indices of self-avoiding walks in two dimensions ha
been obtained with a transfer-matrix finite-size method@11–
14# due to Derrida@11#. The largest eigenvalue of an exa
transfer matrix for self-avoiding walks on strips of infinit
length and finite widthL is determined numerically. Then th
sequence of numerically exact results for finiteL is extrapo-
lated toL5`. Convergence accelerating algorithms@15,16#
have proved very useful in extrapolating the data. These
gorithms involve subtraction of numbers with small relati
differences and require data accurate to many significant
ures.

In this section self-avoiding walks on infinitely long two
dimensional strips of square lattice with lattice constana
51 and with L52,3 . . . ,11 rows are analyzed with the
transfer-matrix approach just described. We work in t
grand canonical ensemble and for free and critica
absorbing boundaries introduce distinct surface and b
fugacities

Ks5e2ts, K5e2t ~30!

for a step along either edge and for all other steps, resp
tively. The transfer matrix is the same as in Refs.@11,14#.

A. Free boundaries

In the semi-infinite geometry with free~hard-wall! bound-
aries, the surface fugacityKs is an irrelevant variable. We
have obtained numerical results both for strips withKs5K
andKs5K free* 50.2675, where we estimate@14# that the lead-
ing irrelevant surface variable, which has scaling indexy5
21, vanishes. In the latter case one expects~and finds! faster
convergence of the finite-size estimates as the system
increases.

For both these choices forKs the critical fugacityKc(L)
5exp@2tc(L)# at whichjL diverges was determined from th
condition~13! that the largest eigenvalue of the transfer m
trix equal 1. Our results forKc(L) with L52,3, . . . ,11 are
listed in Table I and shown by full and empty circles in Fi
1. The data seem compatible with theL21/n5L24/3 depen-
dence implied by Eq.~28! for largeL. Extrapolating the two
sequences toL5` with the van den Broek–Schwartz algo
rithm @15,16#, we obtainKc(`)50.38060.001, consistent
with the best estimate
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Kc~`!50.379 052 28 ~31!

of Guttmann and co-workers@17,18#.
The transfer-matrix data for the quantity

A~L !5LL~L !21@ tc~`!2tc~L !#

5LKlL8
(0)~Ks ,K !ln

K

Kc~`!
U

K5Kc(L)

~32!

on the right side of Eq.~23! are also listed in Table I. Here
we have expressedL(L) in terms of the largest eigenvalu
of the transfer matrixlL

(0) using Eqs.~14! and ~30!. In the
casesKs5K and Ks5K free* , lL8

(0)(Ks ,K) denotes the ordi-
nary and partial derivative, respectively, oflL

(0) with respect
to K. According to Eq.~23! theA(L) approach the universa

TABLE I. Transfer-matrix results for free boundary condition
The entry forKc(`) is the value in Eq.~31!. The entries forA(`)
were obtained with the van den Broek–Schwartz extrapolation
gorithm.

Ks5K Ks50.2675
L Kc(L) A(L) Kc(L) A(L)

2 0.6180 3399 1.351 2016 2.7383 178 2.896 927
3 0.5222 9500 1.540 2518 0.6965 6501 2.111 168
4 0.4790 9131 1.654 9658 0.5433 0133 2.078 311
5 0.4547 5926 1.732 2575 0.4876 3388 2.080 118
6 0.4392 9415 1.787 8753 0.4590 4147 2.085 660
7 0.4286 7323 1.829 8051 0.4417 3491 2.091 014
8 0.4209 7265 1.862 5388 0.4301 9228 2.095 553
9 0.4151 6014 1.888 7978 0.4219 8094 2.099 289
10 0.4106 3411 1.910 3269 0.4158 6327 2.102 35
11 0.4070 2125 1.928 2964 0.4111 4399 2.104 89
` 0.3790 5228 2.1260.01 0.3790 5228 2.1260.01

FIG. 1. Critical monomer fugacityKc(L)5exp@2tc(L)# for free
boundaries withKs5K ~full circles! andKs5K free* 50.2675~empty
circles!, critically absorbing boundaries~squares!, and periodic
boundaries~triangles!. The point on the vertical axis is the estima
~31! of Kc(`) obtained in Refs.@17,18#.
amplitudeA in Eq. ~1! in the limit L→`. Extrapolating the
two sequences ofA(L) in Table I toL5` with the van den
Broek–Schwartz algorithm, we estimateAfree52.1260.01.
The two sequences ofA(L) and our prediction for the lim-
iting value are shown in Fig. 2. The sequence withKs5K is
compatible with the expected@19# form A(L)2A(`);L21

for largeL.

B. Critically absorbing boundaries

Here we follow the same procedure as for free bou
aries, except thatKs is replaced by the estimateKcrit ads*
50.7736 of the critical edge fugacity for adsorption of
self-avoiding walk@14#. The corresponding transfer-matri
data forKc(L) andA(L) are listed in Table II. TheL depen-
dence of theKc(L), shown by square points in Fig. 1, seem
compatible with the asymptotic behavior~28!, and our van

l-

FIG. 2. The quantityA(L) defined in Eq.~32! for free bound-
aries with Ks5K ~full circles! and Ks5K free* 50.2675 ~empty
circles!. The square point with error bars on the vertical axis is o
van den Broek–Schwartz estimateAfree52.1260.01.

TABLE II. Transfer-matrix results for critically adsorbing
boundary conditions. The entry forKc(`) is the value in Eq.~31!.
The entry forA(`) was obtained with the van den Broek–Schwa
extrapolation algorithm.

L Kc(L) A(L)

2 0.2926 5770 20.1171 2598
3 0.3524 5370 20.1182 4475
4 0.3647 7772 20.1195 3242
5 0.3697 1263 20.1206 9628
6 0.3722 8653 20.1217 2166
7 0.3738 3657 20.1226 1591
8 0.3748 5892 20.1233 9830
9 0.3755 7708 20.1240 8819
10 0.3761 0545 20.1247 0203
11 0.3765 0822 20.1252 5310
` 0.3790 5228 20.12960.001
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den Broek–Schwartz estimateKc(`)50.37960.001 is con-
sistent with Eq.~31!. Extrapolating the sequence ofA(L) in
Table I to L5` with the van den Broek–Schwartz algo
rithm, we obtainAcrit ads520.12960.001. Note thatAcrit ads
is negative. The narrower the strip, the lower the free ene
of confinement, due to the greater fraction of the monom
on energetically favored boundary sites.

C. Periodic boundary conditions

The case of periodic boundaries corresponds to a sq
lattice ofL rows on the surface of an infinitely long cylinde
The A(L) are given by Eq.~32!, with lL8

(0)(Ks ,K) replaced
by dlL

(0)(K)/dK. The transfer-matrix data forKc(L) and
A(L) are listed in Table III. Once again theL dependence o
theKc(L), shown by triangular points in Fig. 1 is compatib
with the asymptotic behavior~28!, and our van den Broek–
Schwartz estimateKc(`)50.38060.001 is consistent with
~31!. The A(L), shown in Fig. 3, are compatible with th
expected@19# form A(L)2A(`);L22 for largeL. Our van
den Broek–Schwartz estimateAperiodic50.67660.001 of the
limiting value is in excellent agreement with the Mon
Carlo result Aperiod50.67560.002 of Frauenkron, Causo
and Grassberger@7#, indicated by the square point with erro
bars on the vertical axis.

Frauenkronet al. also report a Monte Carlo estimate
the universal amplitudeB in the scaling prediction

lim
N→`

^w2&
Ri

'
B

L
, L@a ~33!

for the second moment of the winding numberw of self-
avoiding walks on the surface of a cylinder. Herew is de-
fined as the number of times a walk winds around the cy
der, with positive and negativew corresponding to clockwise
and counterclockwise directions.

To calculate^w2&, we include fugacitieset and e2t for
each clockwise and counterclockwise step, respectively
the walk perpendicular to the cylinder axis in both the c
nonical and grand-canonical ensembles. Since there aL
rows parallel to the symmetry axis of the cylinder, a co

TABLE III. Transfer-matrix results for periodic~cylindrical!
boundary conditions. The entry forKc(`) is the value in Eq.~31!.
The entries forA(`) and B(L) were obtained with the van de
Broek–Schwartz extrapolation algorithm.

L Kc(L) A(L) B(L)

2 0.5000 0000 0.8308 0188 0.2500 0000
3 0.4367 4647 0.7503 6112 0.3635 0534
4 0.4151 1681 0.7142 1136 0.4137 4660
5 0.4047 4907 0.6976 9258 0.4372 7019
6 0.3987 6231 0.6895 1490 0.4494 5193
7 0.3948 9044 0.6850 3908 0.4564 6874
8 0.3921 9437 0.6823 5214 0.4609 0605
9 0.3902 1775 0.6806 1558 0.4638 9589
10 0.3887 1234 0.6794 2868 0.4660 3173
11 0.3875 3155 0.6785 8229 0.4676 4803
` 0.3790 5228 0.67660.001 0.47460.001
y
rs

re

-

of
-

-

plete clockwise rotation has weighteLt. In the large-N limit
the free energies in the two ensembles are again related
Legendre transformation similar to~9!, ~10!, and^w2& satis-
fies

L2^w2&5
]2

]t2 lnNL~r ,N,t!U
r 5Ri , t50

5Ri
]2

]t2 ln lL
(0)~ t,t!U

t5tc(L), t50

. ~34!

Combining Eqs. ~13!, ~33!, and ~34!, we obtain B
5 limL→` B(L), where

B~L !5
1

L

]2

]t2 lL
(0)~ t,t!U

t5tc(L), t50

. ~35!

The transfer-matrix data forB(L) are listed in Table III
and shown in Fig. 4. TheB(L) are compatible with the ex
pected@19# form B(L)2B(`);L22 for large L. Our van
den Broek–Schwartz estimateB50.47460.001 of the limit-
ing value is in excellent agreement with the Monte Ca
resultB50.47560.004 of Frauenkronet al.

IV. CONCLUSIONS

Simple scaling arguments given in de Gennes’ book
termine the the free energy of a long flexible polymer in
tube apart from a dimensionless universal constantA. Since
the early 1970’s one has known that long polymer chains
related to the magneticn-vector model near criticality. We
were interested in learning whetherA can be expressed in
terms of well-known universal exponents and amplitudes
critical phenomena. Our main results, given in Eqs.~3!, ~14!,
and ~23!, relateA to the correlation length of the magnet
model and to the largest eigenvalue of the polymer tran

FIG. 3. The quantityA(L) defined in Eq.~32! for periodic~cy-
lindrical! boundary conditions. The square point with error bars
the vertical axis is the Monte Carlo estimateAperiod50.67560.002
of Ref. @7#.
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matrix. From these formulasA does not appear to be one
the familiar universal quantities in critical phenomena. Ho
ever, standard finite-size scaling for the correlation len
implies thatA is indeed universal.

Equations~14! and~23! provide a useful starting point fo

FIG. 4. The quantityB(L) defined in Eq.~35! for periodic~cy-
lindrical! boundary conditions. The square point with error bars
the vertical axis is the Monte Carlo estimateB50.47560.004 of
Ref. @7#.
si

ss

ns

v

el

a

-
h

calculating A with transfer-matrix finite-size scaling. Fo
self-avoiding walks on the surface of a cylinder we obta
Aperiod50.67660.001 andB50.47460.001 for the universal
constants defined in Eqs.~1! and~33!, in excellent agreemen
with Monte Carlo results@7#. For free~hard-wall! and criti-
cally absorbing boundaries we predictAfree52.1260.01 and
Acrit ads520.12960.001. That Afree.Aperiod is physically
reasonable, since hard walls confine the polymer m
tightly confined than periodic boundaries, resulting in
lower conformational entropy. For critically absorbin
boundariesAcrit ads,0, i.e., the energetic advantage of co
finement outweighs the entropic disadvantage.

We are unaware of any estimates of the universal am
tudeA in three dimensions. Milchevet al. @20# have carried
out Monte Carlo simulations of a polymer chain in a thre
dimensional tube with a square cross section. They sh
how an attractive short-range interaction between the mo
mers and tube walls affects the longitudinal and transve
dimensions of the polymer and the monomer density profi
Stilck @21# has recently analyzed the density profile of tw
dimensional polymers on strips with a numerical transf
matrix approach similar to our own.
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